Light emitting diodes using $\text{In}_x\text{Ga}_{1-x}\text{P}$ quantum well structures for wound healing

Kaitlyn Parsons
ECE 498CB – Professor Bayram
Outline

• Motivation and background
• Simulation results
• Final Structure
• Summary
Outline

• Motivation and background
 • Simulation results
 • Final Structure
 • Summary
Motivation and background

- Light therapy used to treat skin wounds
 - Traditional methods → thermal damage
- 610 – 650 nm wavelengths for difficult to heal wounds
- LEDs → tunable emission
 - Forward biased p-n junction
 - low-cost, mobile, safe

BioPhotas (2015).

Sparkfun (2018).
Outline

- Motivation and background

- Simulation results
 - Indium composition in wells
 - Number of quantum wells
 - Well thickness

- Final Structure

- Summary
Lateral LED structure

- Target emission wavelength: 610 – 650 nm
- $\text{In}_x\text{Ga}_{1-x}\text{P}$ active region material
- $(\text{Al}_{0.6}\text{Ga}_{0.4})_{0.5}\text{In}_{0.5}\text{P}$ barriers
- Wavelength tunability: well composition, width

Indium composition

- Increasing In red-shifts spectrum
- Turn-on voltage decreases with increasing In
Indium composition

- Increasing In red-shifts spectrum
- Turn-on voltage decreases with increasing In
- Internal quantum efficiency increases with In
- Maximum radiative recombination increases with In
Number of quantum wells

- Increasing number of wells increases emission intensity
- Turn-on voltage decreases with number of wells
Number of quantum wells

- Increasing number of wells increases emission intensity
- Turn-on voltage decreases with number of wells
- Decrease in internal quantum efficiency with more wells
- Total radiative recombination evenly distributed between wells
Well thickness

- Increasing well width red-shifts peak emission
- Turn-on voltage decreases with increasing width
Well thickness

- Increasing well width red-shifts peak emission
- Turn-on voltage decreases with increasing width
- Internal quantum efficiency decreases with increasing width
- Radiative recombination decreases with increasing width
Outline

• Motivation and background
• Simulation results
• Final Structure
• Summary
Final LED structure

- 5 quantum wells
- 5 nm thick wells and barrier
- In\(_{0.55}\)Ga\(_{0.45}\)P composition
Final LED structure

- 5 quantum wells
- 5 nm thick wells and barrier
- $\text{In}_{0.55}\text{Ga}_{0.45}\text{P}$ composition

- Peak emission = 647 nm
- Turn-on voltage = 1.8 V
Outline

• Motivation and background
• Simulation results
• Final Structure
• Summary
Summary

- 610 – 650 nm light required for difficult to heal wounds
- InGaP/(AlGa)InP multiple quantum well LED
- Composition and well width tunes emission wavelength
- 55% In, 5 nm well, 5 wells optimum for 647 nm emission
Thank you!