Exploring Possibility of Replacing 248 nm KrF with AIGaN Photolithography

Electrical \& Computer Engineering

ECE443 Final Project presented by Ming-Yan Hsiao

$04 / 22 / 2024$

Motivation

- DUV IQE and EQE State-of-art improvements
- Expensiveness and low efficiency of Excimer Laser
- Trend of UV LEDs replacing Hg lamps

Parameters to Meet and Source Mask Optimization

Estimation for the Area of Light Source

Free Form Light source for Source Mask Optimization

$$
\text { Fig. } 8 \text { Illumination source-shape examples }
$$

Large σ

$\sigma_{\text {inner }}=0.8$
$\sigma_{\text {outer }}=0.975$

Medium σ

$\sigma_{\text {inner }}=0.5$

Small σ

Structure of AIGaN LED

Structure:

Color	Composition	Doping $\left[\mathrm{m}^{\wedge}-3\right]$	Height (um)	Purpose
	AlGaN, $\mathrm{x}=0.9$	Si: $3 \mathrm{E}+24$	$2.50 \mathrm{E}+00$	substrate
	AlGaN, $\mathrm{x}=0.9$	Si:3E+23	$5.00 \mathrm{E}-01$	against polarization
	AlGaN, $\mathrm{x}=0.9$	Si:1E+26	$1.50 \mathrm{E}-01$	$\mathrm{n}+$ for contact
	MQW	N / A	$7.50 \mathrm{E}-01$	Five quantum wells
	AlGaN, $\mathrm{x}=0.95$	$\mathrm{Mg}: 5 \mathrm{E}+24$	$1.00 \mathrm{E}-02$	PEBL
	AlGaN, $\mathrm{x}=0.9$	$\mathrm{Mg}: 1 \mathrm{E}+20$	$5.00 \mathrm{E}-02$	P junction
	AlGaN, $\mathrm{x}=0.9$	$\mathrm{Mg}: 1 \mathrm{E}+20$	$5.00 \mathrm{E}-02$	Hole Injection
	Metal			Contact

MQW:

Color	Composition	Height (um)	Purpose
	AIGaN, $x=0.93$	$1.20 \mathrm{E}-02$	Barrier
	AIGaN, $x=0.75$	$3.00 \mathrm{E}-03$	Quantu m

2DLED.std_000

Simulation - Tuning to 248 nm and Adding Depletion Layer against Polarization

Simulation - Precise Simulation; leakage of electrons

Turned on parameters:

- set_polarization
- self_consistent
- independent_mqw

	Auger_n	Auger_p	lifetime_n	lifetime p	Rad. Recomb.
material	$3.4 \mathrm{e}-30 \mathrm{~m}^{6} / \mathrm{s}$	$3.4 \mathrm{e}-30 \mathrm{~m}^{6} / \mathrm{s}$	$1 \mathrm{E}-6 \sec ^{-1}$	$1 \mathrm{E}-6 \sec ^{-1}$	default
Active region	$3.4 \mathrm{e}-30 \mathrm{~m}^{6}$	$3.4 \mathrm{e}-30 \mathrm{~m}^{6} / \mathrm{s}$	$1 \mathrm{E}-6 \sec ^{-1}$	$1 \mathrm{E}-6 \sec ^{-1}$	$2 \mathrm{e}-10 \mathrm{~m}^{2} / \mathrm{s}$

- q_transport_mqw_bundle

Figure 9, Radiative Recombination diagram of $\mathrm{x} _\mathrm{qw}=0.75$ and x _barrier=0.9

Simulation - Precise Simulation; Tuning Quantum barrier and Well

The x_quantum barrier is changed to 0.93 (higher barrier) The x_quantum_well $=0.75 \& 0.78$ are simulated.
Both simulations have one dominant quantum well near n-substrate.

Simulation - Precise Simulation; Tuning Quantum barrier and Well

The x_quantum barrier is changed to 0.93 (higher barrier) The x_quantum_well $=0.75 \& 0.78$ are simulated.
Both simulations have one dominant quantum well near n-substrate.

Post Simulation Light Source Design -1

sp_rate(normalized) vs. wavelength

Current $[\mathrm{A} / \mathrm{m}]$	IQE	WPE	P_elec $[\mathrm{W} / \mathrm{m}]$	P_opt $[\mathrm{W} / \mathrm{m}]$
0.815	0.231	0.221	4.075	0.905
4.9656	0.143	0.112	31.62	3.538

Post Simulation Light Source Design -2

Current $[\mathrm{A} / \mathrm{m}]$	IQE	WPE	P_elec $[\mathrm{W} / \mathrm{m}]$	P_opt [W/m]
0.815	0.231	0.221	4.075	0.905
4.9656	0.143	0.112	31.62	3.538

$P_{\text {tot }}=n * 3.538 * 10^{-6}=0.0828 \mathrm{~W}$
number $=\frac{2 \pi * r}{5 * 10^{-} 3}=23395$
$5 \mathrm{~W} / 0.0828 \mathrm{~W}=181.159$, meaning that we need at least 182 arrays more of LED within this circular closed pack. That assume 190 arrays to be conservative, $190 * 5 * 10^{-3}=0.95 \mathrm{~mm}$. The minimum σ is thus clear: $0.95 / 18.617=0.051$.

$\sigma_{\text {inner }}=0.8$
$\sigma_{\text {outer }}=0.975$

$\sigma_{\text {inner }}=0.5$
$\sigma_{\text {outer }}=0.6$

$\sigma_{\text {inner }}=0.3$
$\sigma_{\text {outer }}=0.4$

$$
\int_{a}^{b} 2 \pi * r d r \div d^{2} \geq \frac{15 W}{3.538 * 10^{-6} W}
$$

$$
d=5 * 10^{-3} \mathrm{~mm} ; r \in[0,18.617] \mathrm{mm}
$$

Sincere Appreciation for Listening

