

Application of LEDs in Intravascular Photoacoustic Imaging

Electrical & Computer Engineering

Dorian Duoyang Christophe Tricaud tricaud2@illinois.edu ECE 443 – Spring 2024 Motivation

Medical Imaging History

- X-ray
- CT Scan
- MRI Scan
- Ultrasound
- Photoacoustic Imaging

"I have seen my death" - Bertha Röntgen 1896

[2]

Handreit Ringer & C. A. M.

Personal Motivation

ELECTRICAL & COMPUTER ENGINEERING

GRAINGER ENGINEERING

Photoacoustic Imaging

- Laser Generation
- Optical Absorption
- Thermal Excitation
- Ultrasonic Receiver

Special Properties

- Spectroscopic Imaging
- Molecular Imaging
- Tunable Penetration
- Metallic Imaging

LED Design

General Structure

Wavelength	Material
530 nm	In _{0.32} Ga _{0.68} N
630 nm	In _{0.43} Ga _{0.57} N
1070 nm	In _{0.57} Ga _{0.43} As
1210 nm	In _{0.77} Ga _{0.23} As

 Contact
Top P Region N _A =10 ¹⁹ cm ⁻³ 5um
Bottom P Region N _A =10 ¹⁷ cm ⁻³ 5um
QW Region ~20nm
N Region N _D =10 ¹⁸ cm ⁻³ 10um
Contact
Width

Sources

- Joule/Optical
- Recombination
- Radiative
- Heat Sink

Lattice Heat Distribution of λ =630nm W=62.5 um LED

Considerations

- High-Refractive Epoxy
- Thermal Isolation

Bulk	Refractive Index	Epoxy	Refractive Index	Approximate LEE
GaN	2.38	ZnO	1.87	72%
GaAs	3.51	TiO2	2.28	45%

Conditions

- 0 to 900 A/m Contact Current
- Body Temperature ~310 K
- 62.5 to 1000 um LED width

Current Trends

- IQE Decreases
- Power Increases
- Temperature Increases
 Size Trends
- IQE Increases
- Power Increases
- Temperature Decreases*

Ι

Requirements

- Temperature < 315 K
- Energy > 0.5 uJ

Secondary Metrics

- Energy Composition
- Temperature Composition

λ (nm)	W (um)	Т (К)	P (W/m)	50ns (uJ)	100ns (uJ)	500ns (uJ)
530	62.5	318.03	351.27	0.281	0.562	2.810
530	125.0	315.54	417.82	0.167	0.334	1.670
530	250.0	313.97	490.11	0.098	0.196	0.980
530	500.0	313.00	577.34	0.057	0.114	0.570
530	1000.0	312.42	665.62	0.033	0.066	0.330
630	62.5	318.69	219.20	0.175	0.350	1.750
630	125.0	316.19	269.57	0.107	0.214	1.070
630	250.0	314.62	323.69	0.064	0.128	0.640
630	500.0	313.08	452.38	0.045	0.090	0.450
630	1000.0	313.07	454.77	0.023	0.045	0.227
1070	62.5	310.67	99.97	0.008	0.016	0.080
1070	125.0	310.47	127.42	0.051	0.102	0.510
1070	250.0	310.42	158.54	0.032	0.064	0.320
1070	500.0	310.47	174.08	0.017	0.034	0.170
1070	1000.0	310.38	218.24	0.011	0.022	0.110
1210	62.5	311.01	20.76	0.017	0.034	0.170
1210	125.0	310.77	27.12	0.011	0.022	0.110
1210	250.0	310.65	34.68	0.007	0.014	0.070
1210	500.0	310.59	43.94	0.004	0.008	0.040
1210	1000.0	310.55	53.21	0.003	0.006	0.030

Design Choices

- Prefer 250 to 500um width
- High Thermal Conductivity Heat-Sink
 Future Efforts
- Infrared Efficient LED
- 3D Heat-Sink
- Epoxy Temperature Modeling
- Transient Response

The Grainger College of Engineering

UNIVERSITY OF ILLINOIS URBANA-CHAMPAIGN

References

[1] B. Wang, J. L. Su, A. B. Karpiouk, K. V. Sokolov, R. W. Smalling, and S. Y.Emelianov,
"Intravascular photoacoustic imaging," IEEE Journal of Selected Topicsin Quantum Electronics, vol.
16, no. 3, p. 588–599, 2010. [Online]. Available: <u>http://dx.doi.org/10.1109/JSTQE.2009.2037023</u>

[2] Panchbhai and A. S., "Wilhelm conrad r⁻ontgen and the discovery of x-rays: Revisited aftercentennial," Journal of Indian Academy of Oral Medicine and Radiology, vol. 27, no. 1,p. 90, 2015. [Online]. Available: <u>http://dx.doi.org/10.4103/0972-1363.167119</u>